# THE EFFECT OF OUTER SPHERE CATIONS ON THE THERMAL STABILITY OF NITRITOCUPRATES(II)

K. BOGUSŁAWSKA and A. CYGAŃSKI

Institute of General Chemistry, Technical University, Łódż, Poland

(Received November 27, 1974)

Thermal analyses by Derivatograph were made for salts of the general formula  $M_2^t M^{II} [Cu(NO_2)_6]$  where  $M^T = K^+$ ,  $Rb^+$  or  $Cs^+$ ; and  $M^{II} = Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$  or  $Pb^{2+}$ . From the results and the chemical and diffractometric analysis of sinters of chosen salts, the mechanism of thermal decomposition was established. Some conclusions concerning the effects of outer sphere cations on the thermal stabilities of these salts are also drawn.

The effects of outer sphere ions on the properties of crystalline complex compounds have not been sufficiently investigated, whereas there are comparatively numerous publications referring to the effects of these ions on the stabilities of complexes in solution.

The thermal stabilities of ammoniates and hydrates formed the object of extensive studies by Biltz et al. [1, 2]. The stability of the complex cation was found to increase with the volume of the outer sphere anion. The thermal stabilities of chloroaurates  $R[AuCl_4]$  were investigated by Paravano and Malquori [3]. These authors found that the stability decreases with increasing strength of the polarizing field of the cation R. The effect of the radius of the outer sphere cation on the temperature of thermal dissociation was also studied for hexacyanoferrates(II) [4]. Duval [5] has presented a thermogravimetric curve for potassium lead nitrito-cuprate(II). There are no literature data on thermal investigations of other nitrito-cuprates(II).

#### Experimental

## Materials

## Preparation of nitritocuprates

Salts of the formula  $K_2M^{II}[Cu(NO_2)_6]$ , where  $M^{II} = Pb^{2+}$  or  $Sr^{2+}$ , were crystallized from aqueous solutions containing copper nitrate, strontium or lead nitrate, and potassium nitrite in a molar ratio 1:1:6.

The compounds  $M_2^{I}Pb[Cu(NO_2)_6]$ , where  $M^{I} = Rb^+$  or Cs<sup>+</sup>, were crystallized from aqueous solutions containing Cu(NO<sub>2</sub>)<sub>2</sub>, Pb(NO<sub>3</sub>)<sub>2</sub> and M<sup>I</sup>NO<sub>2</sub> in a molar ratio 1 : 1 : 4.

The remaining complex salts of the discussed group were crystallized from aqueous solutions containing  $Cu(NO_2)_2$ ,  $M^{II}(NO_2)_2$  and  $M^{I}NO_2$  in a molar ratio 1:1:2.

Solutions of copper, rubidium and caesium nitrites were prepared in exchange reactions of the respective sulphates with barium nitrite; strontium and calcium nitrites were prepared in exchange reactions of the respective chlorides with silver nitrite. For all preparations, reagents "pure for analysis", produced by "POCh", Gliwice, were used. Concentrations of the stock solutions were as follows:  $Cu(NO_3)_2$  and  $Cu(NO_2)_2 \sim 3.5$  molar,  $Pb(NO_3)_2 \sim 1$  molar,  $M^{II}(NO_2)_2$  ( $M^{II} = Ca^{2+}$ ,  $Sr^{2+}$  or  $Ba^{2+}$ ) ~ 3 molar, and  $M^{II}NO_2$  ( $M^{II} = K^+$ ,  $Rb^+$  or  $Cs^+$ ) ~ 15 molar.

The salts were crystallized at about  $0^{\circ}$  for 1 to 240 hours. The crystals were filtered and dried on filter paper at room temperature.

### Methods

### Analysis of the salts

The nitrite content of each compound was determined by titration with potassium permanganate after Wilcox [7]. Copper in compounds not containing lead was determined by direct titration with EDTA in the presence of murexide as

| Compound<br>formula<br>K2Ca[Cu(NO2)6]                 | Calcd.                                                                                                                                                                                                                               | a <sup>2</sup> +<br>detrmd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 +                                                   | NO                                                    | D <sub>2</sub>                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                                       | calcd.                                                                                                                                                                                                                               | detrmd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                      |                                                       |                                                       |
| K CalCu(NO.).]                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | caled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | detrmd.                                                | calcd.                                                | detrmd.                                               |
|                                                       | 8.75                                                                                                                                                                                                                                 | 8.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.73                                                  | 60.27                                                 | 60.86                                                 |
| $Rb_{9}Ca[Cu(NO_{2})_{6}]$                            | 7.28                                                                                                                                                                                                                                 | 7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.46                                                  | 50.12                                                 | 49.99                                                 |
| $Cs_2Ca[Cu(NO_2)_6]$                                  | 6.21                                                                                                                                                                                                                                 | 6.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.72                                                   | 42.76                                                 | 42.28                                                 |
| :                                                     | Sr <sup>2</sup>                                                                                                                                                                                                                      | 2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                       |                                                       |
| $K_{2}Sr[Cu(NO_{2})_{6}]$                             | 17.33                                                                                                                                                                                                                                | 17.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.64                                                  | 54.61                                                 | 54.56                                                 |
| $Rb_{9}Sr[Cu(NO_{2})_{6}]$                            | 14.65                                                                                                                                                                                                                                | 14.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.52                                                  | 46.14                                                 | 46.35                                                 |
| $Cs_2Sr[Cu(NO_2)_6]$                                  | 12.64                                                                                                                                                                                                                                | 12.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.15                                                   | 39.83                                                 | 39.81                                                 |
|                                                       | Ba                                                                                                                                                                                                                                   | 2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                       | l                                                     |
| K <sub>a</sub> Ba[Cu(NO <sub>3</sub> ).]              | 24.74                                                                                                                                                                                                                                | 24.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.48                                                  | 49.73                                                 | 49.72                                                 |
|                                                       | 21.20                                                                                                                                                                                                                                | 20.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.76                                                   | 42.60                                                 | 42.17                                                 |
| $Cs_2Ba[Cu(NO_2)_6]$                                  | 18.49                                                                                                                                                                                                                                | 18.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.64                                                   | 37.16                                                 | 37.48                                                 |
|                                                       | Pb                                                                                                                                                                                                                                   | 2+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                       |                                                       |
| K <sub>s</sub> Pb[Cu(NO <sub>s</sub> ) <sub>e</sub> ] | 33.15                                                                                                                                                                                                                                | 33.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.20                                                  | 44.16                                                 | 43.79                                                 |
| - · - ·                                               | 28.86                                                                                                                                                                                                                                | 28.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.70                                                   | 38.46                                                 | 37.88                                                 |
| $Cs_2Pb[Cu(NO_2)_6]$                                  | 25.49                                                                                                                                                                                                                                | 25.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.84                                                   | 33.97                                                 | 33.85                                                 |
|                                                       | $C_{2}Sr[Cu(NO_{2})_{6}]$<br>$C_{2}Sr[Cu(NO_{2})_{6}]$<br>$C_{2}Sr[Cu(NO_{2})_{6}]$<br>$C_{2}Sr[Cu(NO_{2})_{6}]$<br>$C_{2}Ba[Cu(NO_{2})_{6}]$<br>$C_{2}Ba[Cu(NO_{2})_{6}]$<br>$C_{2}Pb[Cu(NO_{2})_{6}]$<br>$C_{2}Pb[Cu(NO_{2})_{6}]$ | $\begin{array}{c} Sr^{2}\\ Sr^{2}Sr[Cu(NO_{2})_{6}] \\ K_{2}Sr[Cu(NO_{2})_{6}] \\ I7.33 \\ Rb_{2}Sr[Cu(NO_{2})_{6}] \\ I4.65 \\ I2.64 \\ \\ Sr_{2}Sr[Cu(NO_{2})_{6}] \\ Rb_{2}Ba[Cu(NO_{2})_{6}] \\ Sr_{2}Ba[Cu(NO_{2})_{6}] \\ Sr_{2}Ba[Cu(NO_{2})_{6}] \\ Sr_{2}Ba[Cu(NO_{2})_{6}] \\ Sr_{2}Ba[Cu(NO_{2})_{6}] \\ Sr_{2}Pb[Cu(NO_{2})_{6}] \\ Sr_{2}Pb[Cu(NO_{2})_{6}] \\ Sr_{2}Pb[Cu(NO_{2})_{6}] \\ Sr_{2}Pb[Cu(NO_{2})_{6}] \\ Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2}Sr_{2$ | $\begin{array}{c ccccc} Sr^{2+} \\ S_2Sr[Cu(NO_2)_6] \\ S_2Sr[Cu(NO_2)_6] \\ S_2Sr[Cu(NO_2)_6] \\ S_2Sr[Cu(NO_2)_6] \\ S_2Sr[Cu(NO_2)_6] \\ S_2Sr[Cu(NO_2)_6] \\ S_2Ba[Cu(NO_2)_6] \\ S_2$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

### Table 1

Composition of nitritocuprates(II)

indicator. In compounds containing both copper and lead, the total content of the two metals was determined by titration with EDTA in the presence of murexide. In a separate sample, lead was titrated with EDTA in the presence of eriochrome black, after copper had been masked with potassium cyanide [8].

Barium [9] and strontium [10] were determined gravimetrically as sulphates. Calcium was determined with EDTA in the presence of murexide as indicator, after masking of the copper with cyanide [8].

#### Thermal investigations

The thermal investigations of nitritocuprates were made with a Derivatograph (MOM Budapest, type OD 102) on 60 mg samples in the temperature range from 20 to 1200°. The heating rate was 6°/min.  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> was used as reference material. Calibration of the DTA curve was carried out using Barshad's method [11].

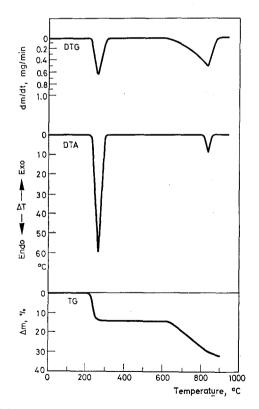



Fig. 1. TG, DTG and DTA curves of Cs<sub>2</sub>Pb[Cu(NO<sub>2</sub>)<sub>6</sub>]

### Diffraction analysis

The diffractometric analysis of sinters was made in a DRON-1 diffractometer with Cu K $\alpha$  radiation and a nickel filter. The intensity of reflections was measured with a scintillation counter (conjugation Q/2Q). The diffraction curves were recorded with an automatic recorder for 2° angles from 2° to 70°.

## Results

Typical thermal curves are shown in Fig. 1 for  $Cs_2Pb[Cu(NO_2)_6]$  and in Fig. 2 for  $Cs_2Sr[Cu(NO_2)_6]$ .

It is evident from all three curves in Fig. 1 that two thermal reactions take place in the investigated temperature range, both endothermic and accompanied by loss of mass. The first begins at 220°, attains its highest rate at 260° and ends at 310°; the second begins at about 600°, attains its highest rate at 830° and ends at 880°.

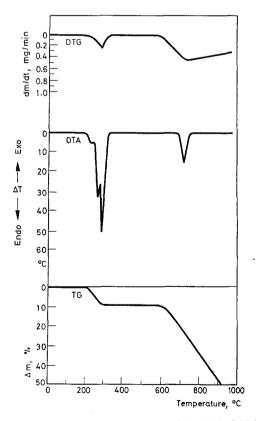



Fig. 2. TG, DTG and DTA curves of Cs<sub>2</sub>Sr[Cu(NO<sub>2</sub>)<sub>6</sub>]

J. Thermal Anal. 9, 1976

Thermogravimetric curves of alkali metal and alkaline earth metal nitritocuprates differ from that of  $Cs_2Pb[Cu(NO_2)_6]$  in showing large losses of mass in the second decomposition stage. The decomposition temperatures of the complex salts investigated are given in Table 2.

| No | Compound formula                             | <i>T</i> , °C | No  | Compound formula                                       | <i>T</i> , °C |
|----|----------------------------------------------|---------------|-----|--------------------------------------------------------|---------------|
| 1. | $K_2Ca[Cu(NO_2)_6]$                          | 202           | 7.  | $K_2Ba[Cu(NO_2)_6]$                                    | 210           |
| 2. | $Rb_2Ca[Cu(NO_2)_6]$                         | 223           | 8.  | $Rb_2Ba[Cu(NO_2)_6]$                                   | 238           |
| 3. | $Cs_2Ca[Cu(NO_2)_6]$                         | 238           | 9.  | $Cs_2Ba[Cu(NO_2)_6]$                                   | 258           |
| 4. | $K_2$ Sr[Cu(NO <sub>2</sub> ) <sub>6</sub> ] | 260           | 10. | K <sub>2</sub> Pb[Cu(NO <sub>2</sub> ) <sub>6</sub> ]  | 220           |
| 5. | $Rb_2Sr[Cu(NO_2)_6]$                         | 280           | 11. | $Rb_{2}Pb[Cu(NO_{2})_{6}]$                             | 240           |
| 6. | $Cs_2Sr[Cu(NO_2)_6]$                         | 285           | 12. | Cs <sub>2</sub> Pb[Cu(NO <sub>2</sub> ) <sub>4</sub> ] | 260           |

| DTG | peak  | temperatures | for | nitritocu   | prates( | TD |
|-----|-------|--------------|-----|-------------|---------|----|
| 210 | pount | tomporature, | 101 | 11111110004 | pracos  |    |

#### Analysis of sinters

#### Chemical analysis

In order to elucidate the course of thermal decomposition and the products, sinters of the investigated salts were prepared under conditions similar to those applied in thermal investigations (heating rate  $5-6^{\circ}/\text{min}$ ). Heating was stopped at the final transformation temperature. The correct preparation of the sinter was controlled by determining the loss of mass.

For the analysis of sinters (Table 3) the same classical methods were used as for the analysis of the salts.

Nitrates were determined by the method of Ulsch [12]. No nitrites were found in the sinters.

|                                                                   | Content in the sinter       |                                                                     |                   |                         |                   |        |  |  |
|-------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|-------------------|-------------------------|-------------------|--------|--|--|
| Initial compound<br>formula                                       | Pb                          | <sup>2</sup> +                                                      | Cu <sup>2</sup> + |                         | NO <sub>3</sub> - |        |  |  |
|                                                                   | %                           | mole                                                                | %                 | mole                    | %                 | mole   |  |  |
| Cs <sub>2</sub> Pb[Cu(NO <sub>2</sub> ) <sub>6</sub> ]<br>(300 °) | 29.80<br>Pb <sup>2+</sup> : | 0.1438<br>Cu <sup>2+</sup> : NO <sub>3</sub>                        | 9.23<br>- = 1,00  | 0.1452<br>: 1,01 : 1,99 | 17.73             | 0.2859 |  |  |
| Cs <sub>2</sub> Sr[Cu(NO <sub>2</sub> ) <sub>6</sub> ]<br>(300 °) | 13.85                       | <sup>2+</sup><br>  0.1580  <br>Cu <sup>2+</sup> : NO <sub>3</sub> - | 10.20 = 1.00 :    | 0.1605<br>1.02 : 2.99   | 29.53             | 0.4727 |  |  |

Table 3

Results of analysis of sinters of nitritocuprates(II)

Fig. 3 shows the diffractograms of  $Cs_2Pb[Cu(NO_2)_6]$  and its sinters obtained at 300° and 900°.

Table 4 gives the interplanar distances d determined from the diffractogram of the sinter obtained at 300°.

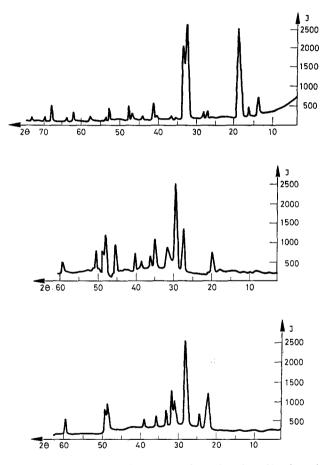



Fig. 3. Diffractogram of Cs<sub>2</sub>Pb[Cu(NO<sub>2</sub>)<sub>e</sub>] a) before sintering, b) after sintering at 300°, c) after sintering at 900°

The presence of CsNO<sub>3</sub>, PbO and CuO was detected in this sinter, and of Cs<sub>2</sub>O, PbO and CuO in that obtained at 900°. Table 5 gives values of interplanar distances determined from a diffractogram of the caesium strontium nitritocuprate sinter obtained at 300°. CsNO<sub>3</sub>, SrO, Sr(NO<sub>3</sub>)<sub>2</sub> and CuO were identified in this sinter.

#### Table 4

| t  | Subst             | Ident. No | d/n  | θ     | 20    |
|----|-------------------|-----------|------|-------|-------|
| IV | CsNO <sub>3</sub> | 4.45      | 4.45 | 9.97  | 19.95 |
|    | CsNO <sub>3</sub> | 3.15      | 3.15 | 14.15 | 28.30 |
|    | PbO               | 3.11      | 3.12 | 14.30 | 28.60 |
| I  | PbO               | 2.80      | 2.81 | 15.90 | 31.80 |
| ١  | CsNO <sub>3</sub> | 2.57      | 2.57 | 17.45 | 34.90 |
|    | CuO               | 2.51      | 2.51 | 17.85 | 35.70 |
| I  | CuO               | 2.31      | 2.31 | 19.45 | 38.90 |
| 1\ | CsNO <sub>3</sub> | 2.23      | 2.23 | 20.25 | 40.50 |
| I  | CsNO <sub>3</sub> | 1.99      | 1.99 | 22.80 | 45.60 |
| II | CuO               | 1.85      | 1.86 | 24.40 | 48.80 |
| II | PbO               | 1.86      | 1    |       |       |
| I  | CsNO <sub>3</sub> | 1.82      | 1.81 | 25.12 | 50.25 |
| I١ | PbO               | 1.55      | 1.55 | 29.75 | 59.50 |

Values of interplanar distances determined from the diffractogram of  $Cs_2Pb[Cu(NO_2)_6]$  sinter (300 °)

## Table 5

Values of interplanar distances determined from the diffractogram of  $Cs_2Sr[Cu(NO_2)_6]$  sinter (300 °)

| 20    | θ     | d/n  | Ident. No | Subst.                            |              |
|-------|-------|------|-----------|-----------------------------------|--------------|
| 19.70 | 9.85  | 4.51 | 4.50      | Sr(NO <sub>3</sub> ) <sub>2</sub> | J            |
| 19.90 | 9.95  | 4.46 | 4.45      | CsNO <sub>3</sub>                 | I۷           |
| 28.40 | 14.20 | 3.14 | 3.15      | CsNO <sub>3</sub>                 | ]            |
| 30.00 | 15.00 | 2.97 | 2.97      | SrO                               | ]            |
| 34.90 | 17.45 | 2.57 | 2.58      | SrO                               | III          |
| 35.70 | 17.85 | 2.51 | 2.51      | CuO                               | ]            |
| 38.40 | 19.20 | 2.34 | 2.35      | $Sr(NO_3)_2$                      | $\mathbf{I}$ |
| 38.90 | 19.45 | 2.31 | 2.31      | CuO                               | I            |
| 40.50 | 20.25 | 2.23 | 2.24      | $Sr(NO_3)_2$                      | II           |
| 45.60 | 22.80 | 1.99 | 1.99      | CsNO <sub>3</sub>                 | I            |
| 48.80 | 24.40 | 1.86 | 1.85      | CuO                               | II           |
| 50.25 | 25.12 | 1.82 | 1.82      | SrO                               | Ι            |
| 53.50 | 26.75 | 1.71 | 1.70      | CuO                               | IV           |

### Discussion

The equations of thermal decompositions of the investigated nitritocuprates were established by comparing the results of chemical and diffractometric analysis of sinters with mass losses from the thermogravimetric curves and preparations of sinters. The diffractogram of the lead caesium nitritocuprates(II) sinter showed the presence of CsNO<sub>3</sub>, PbO and CuO. According to the chemical analysis, the molar ratio Pb : Cu : NO<sub>3</sub> was 1 : 1 : 2. The mass loss after heating up to 300° was 14.16%, while that during the preparation of the sinter was 14.9%. Hence, the reaction of thermal decomposition of Cs<sub>2</sub>Pb[Cu(NO<sub>2</sub>)<sub>6</sub>] may be represented by the equation:

$$Cs_2Pb[Cu(NO_2)_6] \rightarrow 2CsNO_3 + PbO + CuO + 4NO$$

Analogous equations were found for the decompositions of the rubidium and potassium salts (see Table 6, left upper part).

| Table 6 |  |
|---------|--|
|---------|--|

|                                                       |                                               | Loss of mass in %            |                                  |                                               |                              |                                  |  |  |  |  |
|-------------------------------------------------------|-----------------------------------------------|------------------------------|----------------------------------|-----------------------------------------------|------------------------------|----------------------------------|--|--|--|--|
| <b>C</b>                                              | ~                                             | I stage                      |                                  |                                               |                              |                                  |  |  |  |  |
| Compound<br>formula                                   | Deter-<br>mined deri-<br>vatograph-<br>ically | Deter-<br>mined in<br>sinter | Calcu-<br>lated from<br>equation | Deter-<br>mined deri-<br>vatograph-<br>ically | Deter-<br>mined in<br>sinter | Calcu-<br>lated from<br>equation |  |  |  |  |
| K <sub>2</sub> Pb[Cu(NO <sub>2</sub> ) <sub>6</sub> ] | 19.16                                         | 19.30                        | 19.20                            | 25.77                                         | 25.55                        | 21.37                            |  |  |  |  |
| $Rb_{2}Pb[Cu(NO_{2})_{6}]$                            | 15.83                                         | 15.95                        | 16.72                            | 18.81                                         | 19.45                        | 18.07                            |  |  |  |  |
| $Cs_2Pb[Cu(NO_2)_6]$                                  | 14.16                                         | 14.90                        | 14.76                            | 28.13                                         | 29.58                        | 15.59                            |  |  |  |  |
| $K_2Sr[Cu(NO_2)_6]$                                   | 13.33                                         | 12.73                        | 13.06                            | 30.93                                         | 31.24                        | 32.06                            |  |  |  |  |
| $Rb_{9}Sr[Cu(NO_{2})_{6}]$                            | 10.83                                         | 10.61                        | 11.04                            | 28.77                                         | 28.31                        | 27.08                            |  |  |  |  |
| $Cs_2Sr[Cu(NO_2)_6]$                                  | 9.16                                          | 9.63                         | 9.52                             | 32.11                                         | 33.06                        | 23.38                            |  |  |  |  |

Losses of mass during the thermal decomposition of nitritocuprates(II)

In a similar way, the second stage of the process can be represented as decomposition of the alkali nitrate:

$$2M^{I}NO_{3} \rightarrow M_{2}^{I}O + 2NO + 3/2O_{2}$$

The respective mass loss data can be found in the 5th, 6th and 7th columns of Table 6. It can be seen that the agreement is best for the potassium salt and somewhat poorer for that of rubidium, whereas the experimental mass loss of  $Cs_2Pb[Cu(NO_2)_6]$  is much higher than that calculated from the above equation. This discrepancy is probably caused by decomposition of  $Cs_2O$  to peroxide and metal, and evaporation of the latter [11].

From the data in Table 6 the following equations can be deduced for the decomposition of alkali metal strontium nitritocuprates:

Stage I: 
$$2M_2Sr[Cu(NO_2)_6] \rightarrow 4MNO_3 + SrO + Sr(NO_3)_2 + 2CuO + (N_6O_3)^*$$
  
Stage II:  $4MNO_3 + Sr(NO_3)_2 \rightarrow 2M_2O + SrO + (N_6O_{15})^*$ 

\* The composition of the volatile products was not studied. In the reactions the overall formula of the gaseous products following from the loss of mass is given.

J. Thermal Anal. 9, 1976

The influence of outer sphere ions on the decomposition temperature of nitritocuprates can be illustrated best by plotting the decomposition temperature against the radius difference  $2r_{MI} - r_{MII}$  (Figs 4 and 5).

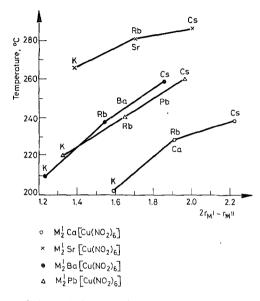



Fig. 4. The dependence of thermal decomposition temperatures for nitritocuprates (II) on the difference of radii of outer sphere cations. Change of M<sup>I</sup> cation

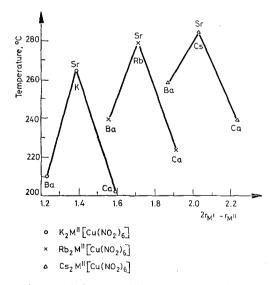



Fig. 5. The dependence of thermal decomposition temperatutes for nitritocuprates (II) on the difference of radii of outer sphere cations. Change of  $M^{tr}$  cation

The thermal stabilities of the salts increase with increasing radius of the monovalent cation in the sequence:

$$K_2M^{II}[Cu(NO_2)_6] < Rb_2M^{II}[Cu(NO_2)_6] < Cs_2M^{II}[Cu(NO_2)_6]$$

where  $M^{II} = Ca^{2+}, Sr^{2+}, Ba^{2+}$  or  $Pb^{2+}$ .

The differences between the decomposition temperatures in the series of lead salts are:

$$T_{Rb-K} = 20^{\circ};$$
  
 $T_{Cs-Rb} = 20^{\circ}.$ 

The higher stabilities of the heavier alkali metal salts can be inferred from their crystal structures. Calculations were made of the distances between the copper atom and the outer surface of the alkali metal ion, represented as a sphere with an ionic radius corresponding to the coordination number 6. The following values were obtained:

| $K_2Pb[Cu(NO_2)_6]$ :  | 3.25 Å, |
|------------------------|---------|
| $Rb_2Pb[Cu(NO_2)_6]$ : | 3.13 Å, |
| $Cs_2Pb[Cu(NO_2)_6]$ : | 3.02 Å. |

Hence, it follows that the ionic bond between the complex anion and the alkali metal cation is weakest for potassium and strongest for caesium (shortest distance). This result is consistent with the higher decomposition temperature of the latter.

A very distinct effect of the alkaline earth metal cation in the outer sphere on the stabilities of nitritocuprates is also observed. Most stable are the strontium salts; the stabilities of the barium and calcium salts are much lower and not very far apart:

$$M_2^{I}Ca[Cu(NO_2)_6] < M_2^{I}Ba[Cu(NO_2)_6] < M_2^{I}Sr[Cu(NO_2)_6]$$

where  $M^{I} = K^{+}$ ,  $Rb^{+}$  or  $Cs^{+}$ .

The respective differences of the decomposition temperatures are:

|                              | T <sub>Sr-Ca</sub> | T <sub>Sr-Ba</sub> |
|------------------------------|--------------------|--------------------|
| in the potassium salt series | 58°                | 50°                |
| in the rubidium salt series  | 57°                | 42°                |
| in the caesium salt series   | 47°                | 20°                |

Substitution of lead for strontium is followed by a considerable lowering of the thermal stability, probably owing to the stronger polarising action of the lead ion. Nevertheless, the lead salts are still more stable than those of barium and calcium.

The effects of divalent cations on the stabilities of nitritocuprates can not be deduced by geometric considerations. Conclusions as to their sequence will not be possible before the respective energetic calculations are performed.

#### References

- 1. W. BILTZ, Z. Anorg. Chem., 130 (1923) 93.
- 2. W. BILTZ and H. G. GRIMM, Z. Anorg. Chem., 145 (1925) 63.
- 3. N. PARAVANO and G. MALQUORI, Gazz. chim. ital. 56 (1926) 23.
- 4. G. B. SEIFER, Ż. nieorg. chim., 7 (1962) 482, 1208, 1242, 1746, 2290.
- 5. C. DUVAL, Inorganic thermogravimetric analysis, Elsevier Publishing Company. Amsterdam 1953.
- 6. M. OSWALD, Ann. Chim., 1, 49 (1914) w/g Gmelins Handbuch der anorganischen Chemie. Strontium p. 94.
- 7. L. K. Wilcox, Ind. Eng. Chem. Anal. Ed., 9 (1937) 136.
- 8. F. J. WELCHER, Analityczne zastosowanie kwasu wersenowego, (The analytical uses of ethylenediamine tetraacetic acid.) Warszawa 1963.
- 9. T. LIPIEC, Z. SZMAL, Chemia analityczna z elementami analizy instrumentalnej. (Analytical chemistry with elements of instrumental analysis), P. Z. W. L. Warszawa 1972, p. 332.
- M. STRUSZYŃSKI, Analiza ilościowa i techniczna, Quantitative and technical analysis, Vol. 2. Warszawa 1971, pp. 193, 218.
- 11. I. BARSHAD, Amer. Min., 37 (1952) 667.
- 12. Gmelins Handbuch der anorganischen Chemie, Caesium. Berlin 1958, p. 107.

RÉSUMÉ – Le mécanisme de la décomposition thermique des sels de formule générale  $M_2^{I}M^{II}$ [Cu(NO<sub>2</sub>)<sub>6</sub>] où M<sup>I</sup> = K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup> et M<sup>II</sup> = Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup> a été établi à partir des données thermiques obtenues à l'aide d'un Derivatograph, ainsi que par des analyses thermiques et diffractométriques sur les produits frittés. L'effet des cations de la couche externe sur la stabilité thermique de ces sels est discuté.

ZUSAMMENFASSUNG – Es wurden thermische Analysen mit einem Derivatographen für die Salze der allgemeinen Formel  $M_2^{I}M^{II}$  [Cu(NO<sub>2</sub>)<sub>6</sub>] durchgeführt [M<sup>I</sup> = K<sup>+</sup>, Rb<sup>+</sup>, Cs<sup>+</sup>;  $M^{II} = Ca^{2+}$ , Sr<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup>]. Aus den Ergebnissen dieser sowie der chemischen und diffraktometrischen Analysen der Sinterprodukte der jeweiligen Salze wurde der Mechanismus ihrer chemischen Zersetzung ermittelt. Einige Folgerungen bezüglich der Wirkung von Kationen der äusseren Sphäre auf die thermische Stabilität konnten ebenfalls gemacht werden.

Резюме — С помощью дериватографа проведен термический анализ солей общей формулы  $M_2^I M^{II} [Cu(NO_2)_6]$ , где  $M^I = K^+$ ,  $Rb^+$ ,  $Cs^+$ ;  $M^{II} = Ca^{2+}$ ,  $Sr^{2+}$ ,  $Ba^{2+}$ ,  $Pb^{2+}$ . Исходя из полученных результатов, а также при помощи химического и диффрактометрического анулиза шлаков взятых солей, установлен механизм термического разложения. Выведены некоторые заключения, касающиеся влияния катионов во внешней сфере на термическую стабильность исследованных солей.